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Abstract 

 

Network Bias Indication Trainer 

 

By  

Sina Hesari 

Master of Science in Computer Science 

 

Network Neutrality has been a hot topic since the proliferation of the internet. 

Indeed, there have been numerous efforts by the research community to expose the 

Quality of Service (QoS) policies that could lead to violations of net neutrality. This 

paper is building upon their success and is intended to employ new methods that can 

assist in detecting such violations.  

There are many methods that an Internet Service Provider can implement to 

violate Net Neutrality. For the most part, we will focus on Strict Priority Queueing 

(SPQ). SPQ leaves a unique and interesting pattern in our detection packet trains. Our 

goal is to train a Machine Learning classifier that can identify whether a packet train has 

gone through a network that violates Net Neutrality using Strict Priority Queueing. 

 In this paper, we will employ statistical models and Machine Learning techniques 

to identify the areas where ISPs are violating Network Neutrality. Our goal is to show 

that with Machine Learning the detection of network neutrality will require smaller and 



ix 

 

less detectable packets. Our hope is that researchers will employ more Machine Learning 

related techniques to identify Network Neutrality violations.  

One of the main classifiers in Machine Learning is Support Vector Machines. We 

have decided to implement this thesis using an SVM identifier. SVMs are great at 

identifying division lines in binary data sets. Therefore, an SVM classifier can detect 

whether a certain condition exists or not. This is useful for our cause because our goal is 

to identify whether a packet train has gone through a network that discriminates using 

SPQ or not. Additionally, we will use Random Forest to train a second set of classifiers 

and compare their results.  

My goal of writing this paper and doing a research in this field was not to make a 

political stand but rather to create transparency and provide more information to internet 

users.
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Chapter 1: Introduction  

 

Net Neutrality is one of the main topics of our generation. Net Neutrality 

represents an ideal world where the Internet Service Providers will treat all internet 

packets that are being transmitted as equals. When perfect Net Neutrality is being 

practiced, the popular contents will be transmitted at a faster rate compared to less 

popular, less in demand contents [1]. In this world, the users will dictate which services 

are supposed to get higher bandwidth [2]. The Internet Service Providers will only act as 

conduits and will not enact any policy to benefit their own bottom lines by treating 

packets differently.  

Some ISPs can adopt policies that allocate more bandwidth to internet data that 

provides them with higher profits. For example, if an ISP owns a content provider, this 

ISP could give extra priority to the packets that are sent from their subsidiary. At the 

same time, if any other content provider wants to enjoy this level of priority, they would 

need to pay extra [3].  

Indeed, actions like these can exacerbate the user experience. For example, if a 

user enjoys a TV show but the streaming service providing this TV show receives a lower 

priority from the ISPs, the user will not have a quality experience while watching that 

show [4]. Similarly, the buffering time will be more than services with higher priorities. 

This inconvenience can cause users to abandon a streaming service. Therefore, content 

providers with more capital will be able to afford paying off the extra fees for higher 

priority. The users and smaller content providers will be at a huge disadvantage in this 
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system. I would like to mention at this point that this paper is not a political paper. The 

goal of this research is not to decrease Net Neutrality, but rather to provide transparency 

on whether it exists [5].  
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Chapter 2: Discrimination Techniques 

 

In this chapter, I will go over one of the policies in which Internet Service 

providers can violate Network Neutrality. These policies are also known as Quality of 

Service (QoS) policies. I will enumerate this method and its effects on internet packets. In 

this paper, I will describe the Strict Priority Queueing (SPQ) policy. 

SPQ is a discrimination method where an ISP can assign two classes of priority to 

the packets. This means that certain data packets will have higher priority in transmission 

compared to the rest [6]. The ISP creates two storage queues in one of the network 

routers. One queue is dedicated to packets with high priority data and the other one is for 

low priority data. When packets enter this node, they will be assigned to their respective 

queue. To exit the router, the data from the high priority queue will be transmitted first. 

Therefore, the high priority queue must be empty before any of the packets from the 

lower priority queue can exit the router [3].  

From a first glance, this might not seem intrusive. It may seem that the low 

priority packets will wait for a short time while higher priority data are being transmitted. 

However, in practice, this method can create substantial delay and loss [6]. To further 

argue this point, we define the idea of bottleneck [7]. Bottlenecks occur when the volume 

of data entering a node is larger than the data exiting this node. For example, if there is 10 

Mb of data entering a node per second while only 2 Mb of data are being transmitted 

from it, the transfer of data through this node will slow down. One of the ways that 

bottleneck can occur is when there is network congestion during prime-time hours. 
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Let’s look at a node in the network that implements the Strict Priority Queueing 

discrimination policy. During prime time or when there are bottlenecks in the network, 

we will have a backlog of data. If a router is implementing SPQ, then only the high 

priority packets entering this node can exit [8]. This means that the low priority data will 

be stored in the low priority queue and must wait until the high priority queue is 

completely empty. Meanwhile, after the low priority packet has been saturated, any 

additional low priority packets entering the node will be dropped. Consider the following 

example. 

ISP XYZ has a contract with Streaming Service A to give its packets a higher 

priority compared to the packets form Streaming Service B. Two internet users are 

watching TV at home simultaneously during the rush hours of internet traffic. One user is 

watching Streaming Service A while the other one is watching Streaming Service B. 

Therefore, the Streaming Service B and Streaming Service A packets enter the 

discriminating node at the same time. When the Streaming Service A packets enter, they 

get stored in the high priority queue while the Streaming Service B packets get stored in 

the low priority queue. The Streaming Service A packets exit the node first. Because the 

users are watching their shows during prime time, more data packets are entering the 

node than exiting. Hence, while this first user is watching Streaming Service A, the 

second user must wait until all the Streaming Service A and other high priority packets 

have been cleared from the node. Only then Streaming Service B packets can be 

transmitted. And while the second user is waiting, any of the additional Streaming 

Service B packets entering that node will be dropped because the low priority packet is 
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full. This results into even more delays because the second user has to request the 

dropped Streaming Service B packets again.  

The reason bottleneck is necessary for SPQ to take effect is that when data is 

being sent and received at the same speed, there will not be any backlog [7]. Therefore, 

the queues get filled and emptied in real time without causing any imposed delay or loss. 

The problem starts when network congestion develops and the lower priority packets 

have to wait until the high priority queue has been emptied out. After reading related 

research papers regarding Net Neutrality, I learnt that in order to detect violations, we 

often need to create congestion and backlog in networks [8] [7]. While creating 

congestion, we need to make sure we are not creating a negative effect for other users.  

One of the challenges with creating bottlenecks is that the testbeds causing these 

congestions needs to send a large set of data packets [7]. The test bed needs to also know 

exactly how much data it should send. Therefore, we can potentially run an experiment 

and not be able to create the needed congestion. When the experiments used in this paper 

was run, a switch was used to ensure a bottleneck existed on path.  

One of the downsides of this approach is that other people who want to run our 

experiment might not be able to create congestion on their own. The good news is that 

one of the upsides of using Machine learning is that we can detect Net Neutrality with 

smaller packet trains and shorter congestion periods. At the same, the users do not need 

to train their own classifiers. This idea and the potential benefits of ML algorithms will 

be discussed in later chapters.  
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In this paper, to train the Machine Learning classifiers, we focused on the SPQ 

packets. We chose one discrimination method because we wanted to first see how the 

Machine Learning classifiers can assist us in detecting Net Neutrality more effectively. 

By working on one method, we can pave the way to train classifiers for other QoS 

techniques. In addition, we chose SPQ because the detection packet trains create a 

detectable and unique pattern after going through a discriminating node. In the following 

chapters I will discuss how the data for detecting Strict Priority Queueing was designed 

and collected.  
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Chapter 3: Packet Structures 

 

In this chapter I will go over the detection method used for Strict Priority 

Queueing. In this paper, we are using data collected by a testbed that was designed to 

detect SPQ by Pofessor Pournaghsband [9] [10]. An early version of the algorithm on 

how to detect SPQ was implemented by Pournaghsband [9]. In addition, an elaborate 

implementation of this testbed and SPQ detection was setup by Mr. Paul Kirth [7]. Their 

work [9] [7] provides great insight into discrimination methods and the different 

mechanism that can detect them. Since the focus of my paper is on Strict Priority 

Queueing, I will describe the SPQ detection method that was designed and developed by 

Pournaghsband [9] and further implemented by Kirth [7].  

In this test bed, the data is being transmitted from a server source and will be 

received by a client. The testbed frame work is designed in C++ [7]. To achieve this goal, 

a set of virtual servers were used in Planet Lab. Planet Lab is a set of servers set aside by 

the academic and private sector communities [10]. Researchers can request to have 

access to these servers in order to run their experiments from multiple sources. Therefore, 

to run the experiment, the operator of testbed needs to choose certain Planet Lab nodes. 

The operator can then remotely log in to the selected Planet Lab nodes and install the 

proper files and software. Afterwards, the user can schedule certain experiments to be 

initiated from these nodes. A receiver client machine was set up at CSUN to receive and 

store this data [7].  

To ensure the experiments were run properly, a hardware switch was setup 

between the sender servers and the receiver client machine in CSUN. This switch is a 
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Cisco Catalyst 3750 and has been configured with several discrimination policies 

including the Strict Priority Queueing [7]. This switch also created the much-needed 

bottleneck. The data from the Planet Lab nodes were sent with the speed of 10 Mbps. 

This switch allowed us to create a bottleneck of 2 Mbps. This implementation creates 

congestion. This bottleneck can also be used with other discrimination policies [7].  

To detect Strict Priority Queuing, two different sets of packet trains are generated 

and sent from the Planet Lab nodes. The first one is a high priority packet train and the 

second a low priority one. In both packet trains, the testbed sends a predetermined 

number of high priority packets to saturate the high priority queue [8]. We will call these 

packets the saturation phase or saturation train. This way when the rest of the packets are 

sent, the high priority queue is full. In addition, the existence of a backlog will result to 

some loss [11]. Therefore, the mere existence of loss will not indicate the existence of 

Net Neutrality violations. What we look for here is the difference in patterns. 

Let’s look at the Low Priority Packet train first. After the saturation phase is over, 

the packet generator starts to generate the low priority phase. In the low priority phase, 

the server starts sending one Low priority packet in between a certain number of High 

priority packets [8]. The packets in between 2 low priority packets are called the 

separation packet train. This way we ensure that the high priority queue keeps getting 

filled up. Therefore, low priority packets have a lower chance of getting through the 

switch. This means that in theory, the loss percentage of Low packets will be much 

higher than High packets.  

Next, we will discuss the high priority phase. In high priority phase, the sender 

server generates a saturation packet train similar to the low priority phase. Afterwards the 
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high priority phase gets generated by sending a high priority packet and then inserting a 

specific number of low priority packets in between them [8]. This is the exact opposite of 

what low priority phase did. In high priority phase, the high priority packets are separated 

by a certain number of low priority packets. Therefore, the total number of packets are 

the same in both high and low priority packet trains. Both saturation phases have the 

same number of packets [8]. In addition, the number of high priority packets in the high 

phase and the number of low priority packets in the low phase are also equal. Finally, the 

length of each separation packet train is equal as well.  

As part of my project, I needed to understand the details of detection algorithm 

and its existing implementation. I found out that the saturation phases consisted of 1,000 

high priority packets. In the low priority phase, a total 5,000 packets would be 

transmitted. We would have 1,667 low priority packets and 3,333 high priority packets 

would be sent in between them [7]. I have drawn Figure1 and Figure 2 to further illustrate 

this point. In Figure 1 and Figure 2, S represent a packet in saturation phase. H represents 

a High packet and L represents a Low packet.   

H4 H3 L2 H2 H1 L1 S1000 S2 S1L1667 H6 H5 L3       

1000 Packets, Saturation phase
5000 Packets total, Low Priority Phase

 

Figure 1: Low Priority Packet Train 
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L4 L3 H2 L2 L1 H1 S1000 S2 S1H1667 L6 L5 H3       

1000 Packets, Saturation phase

5000 Packets total, High Priority Phase

 

Figure 2: High Priority Packet Train 

 

Let’s look at the Streaming Service B vs. Streaming Service A example. We are 

going to create our packet trains using Streaming Service A and Streaming Service B 

packets. The ISP XYZ is giving a higher priority to Streaming Service A packets. A low 

priority packet train would start with 1,000 Streaming Service A packets. Next, the 

packet generator node would send the first Streaming Service B packet. This packet 

would be packet number 1. For each Streaming Service B packet sent, the test server 

would generate two Streaming Service A packets. Thus, the first two Streaming Service 

A packets are packet number 2 and packet number 3. This process would repeat until 

packet number 5,000 was sent. A similar situation would repeat for the High priority 

packet train. 

The rationale behind creating these two packet trains is to compare their loss 

percentage. In Pournaghsband’s algorithm [9], the received packet trains would be 

cleaned up. The saturation phase would be scrapped and all the low priority packets in the 

high priority phase would be filtered out. The tester would only need to look at the high 

priority packets in the high priority phase. Similarly, the saturation phase and the high 

priority packets would be omitted in the low priority phase.  
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At the same time, both packet trains are sent from the same source and right after 

one another [7]. This means that both packets took the same path to our receiver machine. 

Hence, we can compare the loss of low priority packets in the low phase with the loss of 

high priority packets in the high phase. The difference between their loss rate can 

determine whether SPQ exists on the path. This calculation does not make any decision 

based on the existence of loss but rather focuses on the loss difference between the two 

priority levels. In theory, we expect that the high priority packets would have a lower loss 

percentage compared to low priority packets. 

The reason I want to work on this area is to develop a classifier that detects SPQ 

policies without looking at the aggregate values of the entire packet trains. One of the 

downsides of the previous method is that two large packet trains are required to be sent. 

Each packet train is about 6 Megabytes. Sending two packets would use 12 Megabytes of 

data [7]. This experiment needs to be run multiple times to confirm the results. Our goal 

is to decrease this size and make the testbed less intrusive on the network.  

Indeed, sending large packets of data can increase suspicions for the ISP. If the 

ISPs become aware of the types of data we are sending to test their neutrality, they can 

meddle with our findings [5]. Therefore, we have additional incentive to make our 

packets as small as possible. I believe the feature selection of Machine Learning can help 

us with creating smaller packets. In fact, we might even be able to send one packet train 

instead of two. This improvement will help the testbed run faster experiments while 

imposing less intrusion on the network. We will discuss how to improve our test bed in 

future chapters. I will enumerate my findings and suggestions regarding the testbed. 
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Chapter 4: Working with Data 

 

In this chapter, I will go over the data that I used for this experiment and how we 

prepared our data to be trained by our classifiers. One possible option was to run the 

experiment from scratch. A few items need to be setup before running the testbed.  

First, a slice of Planet Lab nodes need to be assigned to the tester. The tester can 

then choose specific servers in this slice to run the experiments from them [7]. Next, the 

tester needs to parallel SSH into these server nodes and install the applications and 

libraries required to run the testbed. Additionally, the tester needs to install the testbed 

code in Planet Lab nodes. The tester should also schedule the experiments to be run and 

sync the server nodes with the receiver machine. Finally, the tester needs to connect the 

servers to a MySQL database in order to collect data [7].   

I was able to run most of these steps; however, the quality of Planet Lab nodes 

have decreased recently. This loss of quality prevented me from running the experiment. 

In addition, I could not connect the servers to the MySQL database and start collecting 

data. I will go over my findings about the testbed, and how we will improve it in future 

chapters.  

Thus, I decided to use existing data from previous experiments. I used the data 

Mr. Kirth had collected using the testbed [7]. This data is still new and relevant to our 

work. The tests were run in April 2016 and the Strict Priority Queuing was implemented 

as described in chapters before. Pournaghsband [9] looked at aggregate loss and 

aggregate delay and used these data to infer if there is any discrimination. My goal was to 
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understand this data and find all patterns that could be used by Machine Learning 

algorithms. 

The existing data was in the PCAP format. Each PCAP file contains all packets 

that had been received by the receiver machine. For example, if a packet train with 

10,000 packets was sent and 4,000 packets were dropped, the PCAP file would show the 

remaining 6,000 packets that were received. Each PCAP file had the sender and the 

receiver information. This is very useful because the packet trains were sent from many 

different Planet Lab nodes.  

There has been other research done regarding Net Neutrality around the world. 

Their goal is to indicate which regions of the world violate neutrality the most [10] [11]. 

By using Planet Lab nodes from around the globe, we accumulate diverse and universal 

data about loss and delay. My first goal was to ascertain which parts of data belonged to 

the saturation phase, high priority phase, and low priority phase.  

I went over the C++ files implemented by Kirth [7] as well as a few other files on 

the testbed server to find this information. During my initial analysis, I realized that the 

packet trains would start with a random source port during the saturation phase. They 

would switch to source port 20000 when the priority phrase started. The packets that 

were sent to destination port 22222 were high priority packets. Originally, destination 

port 22223 was set for the low priority packets. However, while running the testbed this 

port was changed to 44444. The reason behind this change is that Planet Lab nodes had 

some issues generating the low priority packets for port 22223 [7]. Therefore, I used only 

the packet trains that were sent to destination port 44444. I will discuss the limitations of 

Planet Lab nodes in my findings. I will also indicate what future users of this testbed can 
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do to work around these limitations. For the SPQ files I used files 15109.pcap through 

15286.pcap. The SPQ packets had a separation packet of size 2. 

Each data packet has a packet number and a frame number. The packet number 

indicates the order in which this packet was generated and sent from the Planet Lab node 

servers. The frame number relates to the order in which the packets were received. For 

example, if a packet was sent from a Planet Lab node as packet number 1, but it was 

received by our receiver server as frame number 200, we can conclude that there was a 

delay during transmission of this packet. Therefore, 199 other packets were received 

before packet number one had arrived. Similarly, if a packet number is not in our PCAP 

file, we know that this specific packet was lost during transmission. This numbering can 

give us a big advantage in finding patterns for our machine learning algorithms. For more 

information refer to Figure 3. 

 

Figure 3: An example of two packet trains. The packet train to the left has low loss and the packet to the 

right has experienced high loss.  
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Next, I used a Python script to convert the PCAP files and extract the proper data 

from them. I collaborated with Mr. Richard Dojillo in developing this script. We 

incorporate the os and csv libraries of Python in our scripts. We start by converting each 

PCAP file into a TXT file. The text file has all the packets that have arrived with their 

respective data. Next we did some testing to find our desired parameters in each packet. 

We decided to keep the packet priority, sender packet ID, time of arrival and the receiver 

packet frame of each packet. We saved this information in a CSV file. Therefore, each 

PCAP file was transformed into a CSV file that made our desired data more accessible.  

After consulting with Doctor Hedayati and Professor Pournaghshband, I decided 

to extract some features from these newly generated CSV files. While incorporating 

machine learning, it is imperative to have all the data points in one file. Since we have 

thousands of packets in each packet train, we decided to break them down to facilitate the 

feature selection.  While analyzing the data, I realized that the loss and delay patterns of 

Strict Priority Queueing packets would fluctuate throughout the PCAP file. Therefore, we 

decided to break each of the packet trains into 50 sections.  

In each section, we decided to look at certain characteristics. We calculated the 

percentage of high and low packets in each section. Next, we kept track of the delays of 

high priority and low priority packets. We calculated the average and variance of the 

delays for each section. In addition, we looked at different percentiles of delay in each 

section.  

While analyzing data, I noticed that in the low priority phase there are usually 

many high priority packets in between two low priority packets. Thus, we calculated the 

number of high packets that were received consecutively. We recorded the consecutive 
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number of high packets in a list and calculated their average, variance, and percentiles. 

After all the calculations were done, we generated 2,100 features for each PCAP file. A 

classifier such as Support Vector Machine can be trained by these features to make a 

decent prediction about the existence of Strict Priority Queueing.  

Table 1 represents the 42 features that were extracted in each of the 50 packet 

train sections. In Table 1, H represent High Priority and L repents Low Priority. 

 

Table 1: List of features in each section 

Feature 

Number
Feature

Feature 

Number
Feature

1 Percentage of H packets in the Packet Train Section 22 40th percentile of delay for L packets

2 Percentage of L Packets in the Packet Train Section 23 50th percentile of delays for L packets

3 Average delays for H packets 24 60th percentile of delay for L packets

4 Variance of delays for H Packets 25 70th percentile of delays for L packets

5 Minimum delays for H packets 26 80 percentile of delay for L packets

6 10th percentile of delays for H packets 27 90 percentile of delays for L packets

7 20th percentile of delay for H packets 28 Maximum delays for L packets

8 30th percentile of delays for H packets 29 The number of H packet trains in a row

9 40st percentile of delay for H packets 30 Average size of the H packet trains in a row

10 50th percentile of delays for H packets 31 Variance size of the H packet trains in a row

11 60th percentile of delay for H packets 32 Minimum size of the H packet trains in a row

12 70th percentile of delays for H packets 33 10th percentile size of H Packet trains in a row

13 80 percentile of delay for H packets 34 20th percentile size of H Packet trains in a row

14 90 percentile of delays for H packets 35 30th percentile size of H Packet trains in a row

15 Maximum delays for H packets 36 40th percentile size of H Packet trains in a row

16 Average delays for L packets 37 50th percentile size of H Packet trains in a row

17 Variance of delays for L Packets 38 60th percentile size of H Packet trains in a row

18 Minimum delays for L packets 39 70th percentile size of H Packet trains in a row

19 10th percentile of delays for L packets 40 80th percentile size of H Packet trains in a row

20 20th percentile of delay for L packets 41 90th percentile size of H Packet trains in a row

21 30th percentile of delays for L packets 42 Maximum size of H Packet Trains in a row
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4.1 Feature 1: Percentage of High Priority Packets 

In each packet train section, we received a number of high priority and low 

priority packets. Our goal was to look at the number of high priority packets and 

compare them to the total number of packets in that packet train section. This 

calculation gives us the percentage of the packets in this section that were high 

priority. The percentage of high priority packets can point to the loss characteristic of 

the packet train section. This way, we can detect whether this percentage fluctuates 

between data points and throughout the packet flow. 

4.2 Feature 2: Percentage of Low Priority Packets 

Similar to the first feature, we wanted to know what percentage of the packets 

were low priority. Therefore, we divided the number of low priority packets by the 

total number of packets in each section. This calculation can guide us in tracking loss 

throughout the packet train and in between data points. 

4.3 Features 3&4: Average and Variance for High Priority Delays 

In each section, we take a look at the delay of high priority packets. The delay 

values are stored in a numpy array. At the end of each packet train section, we 

calculate the average and variance of the delays for high packets. After the average 

and variance, we find the percentiles related to these values. 

4.4 Definition of Percentiles 

A percentile represents a point in a series where a certain percentage of the 

values in the series are less than this point. Therefore, the Nth percentile is the value 

where N% of the data points are behind it. For example, the 0th percentile is the 

lowest value in a series. The 50th percentile is the median value of a list. The 100th 
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percentile is the highest value in a list. And 30th percentile is the value where 30% of 

our data are less than this value. For example, if our list is the numbers 1 through 10, 

the 0th percentile is 1, and the 100th percentile is 10.  

4.5 Features 5-15: The Percentile Values for Delays of High Packets 

As mentioned earlier, the delays for High Priority Packets are stored in an 

array. We can then look at the values in this array and calculate what the values for 

certain percentiles are. We calculated 11 percentiles for these features. We started 

with the lowest value in the series or the 0th percentile and calculated all percentiles 

that are a factor of 10. This way we would collect a representative distribution of the 

delays for high packets in each packet train section. Our goal was to find out whether 

the delay distribution would change between the baseline and SPQ data. 

4.6 Features 16-28: The Low Priority Packet Delays 

Next we put all the delays for the low priority packets in an array and 

calculated their average, variance, and percentiles. Our calculations were similar to 

the ones performed for the delays of high priority packets. Our goal was to find 

whether the averages and the distributions change throughout the packet train and 

between baseline and SPQ data. 

4.7 The Number of Hight Priority Packets in between two Low Priority Packets 

While looking at the data, I noticed that the SPQ packet trains might have a 

few high priority packets in a row. Since this is a big deviation from the original 

patterns, I decided to incorporate this discrepancy in our features. Therefore, in each 

section, we recorded how many high priority packets existed in between two low 

priority packets. I would set a counter for high priority packets and each time a low 
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priority packet appeared, I would record that number in a list and set the counter to 

zero. For example, if the pattern was “Low High High Low Low High Low”, I would 

insert 2,0, and1 into my list. My goal was to find an interesting pattern for SPQ 

detection. 

4.8 Features 29-42: The Average, Variance and Percentiles of High packets in a row  

After creating the list from section 4.7, we started to look at the features we 

could extract from it. We decided to extract the size of this list as one of our features. 

This feature can tell if the high priority packets were spread out or concentrated in one 

or two groupings. Next, we calculated the average, variance and the respective 

percentiles for this list. Our goal was to compare these values and give the learning 

algorithm an opportunity to identify the sections that had long consecutive high 

packets. 

4.9 Baseline Data 

So far we have cleaned up all the data where Strict Priority Queueing exists. 

These are our positive cases. The classifier needs to have some negative cases as well. 

Otherwise, it will not be able to make proper predictions. Henceforth, we refer to the 

negative cases as baseline. Since no specific baseline data was run with the SPQ packet 

trains, I used a similar set of data that experienced the same exact bottleneck value as 

SPQ data did. For the base line files, I used files 15752.pcap through 15951.pcap.  

The data we used consisted of one set of packets and was not broken into low and 

high packets. This characteristic does not create a problem for our baseline data. The 

main value that needs to be the same between our SPQ and baseline data is the size of the 

bottleneck.  In addition, the data we used was run through a node with only one queue. 
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This is the same characteristic needed for running the baseline packet trains. However, 

the baseline data needs to be cleaned up and transformed.  

The approach we took was to use the packet ID numbers. We already knew which 

packet numbers would be high and which packets would be low in a SPQ packet train. 

Therefore, I developed a script that would transform the baseline PCAP files and assign 

high and low values to their individual packets. I created two similar scripts. One script 

generates high priority baseline packet trains while the other one generates low priority 

baseline packet trains. I made sure to create the high and low baselines from separate 

files. The baseline packet trains were converted into CSV files. We extracted the same 

2,100 features from the baseline files as we did from the Strict Priority Queueing files. 

However, there is one difference between the baseline and SPQ features.  

The features of each PCAP file are stored in one row in a new CSV file. This 

CSV file will be used to train our classifier. Each column represents one of the 

2,100features. The classifier needs to be able to distinguish between the baseline and 

SPQ files. Therefore, each row gets one additional column. This new column will 

represent whether Net Neutrality violations were present or not. Therefore, for this 

feature, the SPQ files will get a value of 1 and the baseline files will get a value of 0. 

Henceforth, we will call this file the CSV Test Points File. 
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Figure 4: The CSV Test Points File. Each row represents one PCAP file or one experiments. The first 

column represents the classification of data. SPQ data have a classif of 1 and BaseLine data have a classif of 0. 

The remaining columns represent the 2100 features 

To test our classifier, we separated some data points from the training set. The 

classifier will be tested by the data points not in the training set. This approach will rid 

our classifier from potential biases of training and testing the classifier with the same data 

points. Python has a function that can provide this capability for us. 
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Chapter 5: Machine Learning Algorithms 

 

One of the major parts of any Machine Learning project is the Feature Selection 

and Feature Engineering [12]. Therefore, the emphasis of this project is on gathering data 

and working to extract the proper features needed for our algorithms. Indeed, data 

scientists spend more time on engineering and optimizing the features rather than running 

their algorithms. This is because most Machine Learning algorithms have already been 

implemented and the fact that some level of human genius is needed in extracting the 

features from data [12]. 

The algorithms I choose must be great at classifying data. In addition, these 

algorithms should be able to work with our training sample size.  The first algorithm we 

considered is Support Vector Machine (SVM). SVM is a supervised learning classifier 

and is designed to calculate a fine line between positive and negative data [13]. SVM was 

created by Mr. Vladimir Vapnik. SVM works in vector space.  Each data point receives 

an X and a Y value. The X values represent the features of our data and the Y value 

represents the classification of this data point. In other words, Y represents if data 

belongs to the positive or negative group.  

Therefore, a data point can be defined by multiple features and belong to one of 

two groups. The Support Vector Machine algorithm will consider all the feature values 

and draws the data points on a graph. At this point, the SVM will look for a distinction 

line between the two sets of data. This line divides our training sample into two separate 

sections of positive and negative data points.  
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The separation line must have certain characteristics. First, our separation line 

needs to divide our training sample into the best two sections possible. This means that 

the distinction groups need to be optimal. At the same time, there has a to a buffer from 

both sides of the line where the closest positive and negative values need to a have a 

minimal distance from the separation line [13]. This section is called the street and two 

line with the minimum distance from the middle of the street are called the gutters. The 

goal of SVM is to find the best distinction line where no data point is between the middle 

of the street and the two gutters. For simplicity, let’s assume that the feature set in X can 

be represented on a two-dimensional plane. In addition, if the Y value is positive our data 

point will be black and if the Y value is negative the data point will be white. The result 

is a two-dimensional graph with all of data points plotted out. We can visually see where 

these points lie and what their respective Y values are. The following figure will give an 

example of this representation of data.   

 

Figure 5: An example of an SVM Classifier [14] 
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In this figure, W and -b are the separating hyperplanes. Gamma is our margin. 

The solid line is the middle of our street and the two dotted lines are the gutters. This 

classification divides the graph in two different sections where there is a good margin 

between the closest data points and the middle classifier line on both sides. The goal of 

an SVM algorithm is to train the classifier in finding the most optimal line in the data set. 

Afterwards, the classifier can receive new data and determine where they would be 

positioned on this graph. This way the classifier can make an educated prediction as to 

whether this data belongs to the positive or negative group.  

I did not implement the SVM on my own. The sklearn [15] and scipy [16] 

libraries of Python have already implemented the Machine Learning algorithms I need. 

While running my program, I realized that the sklearn [15] and scipy [16]libraries are not 

compatible with the Windows operating system. Thus, I switched to an Ubuntu machine. 

I will discuss the actual results I obtained in the next section.  

After getting some promising results with Support Vector Machine, we decided to 

train a Random Forest Classifier with our data. Random Forest Classifier is an ensemble 

of decision trees that grow and split based on the features in our dataset [17]. The 

algorithm creates many subsets of the original data. The algorithm then creates decision 

trees with the subset of our data. The Decision Trees are similar to the tree data structures 

[18]. However, in decision tress, at each node, the splits are done based on the values of 

our features. For example, if one of our features is the percentage of High packets, the 

node’s left child could represent the less than 50% and the right child could be more than 

50%.  
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Next, we will make our decisions based on the accuracy of the generated trees. 

Because we are creating and ensemble of trees, each decision tree votes on the 

effectiveness of the features it used. The features with the highest value are most 

effective to our decision making. Therefore, the classifier will give more weight to those 

features. In the end, the most important features are used in our classifier. Random forests 

have low variance and do not overfit the data because the classification is done with 

breaking down the data into smaller samplers rather than looking at the entire training 

data. For this reason, Random Forests are widely used and are accurate [17]. 

In addition, the process of finding the more important features is useful because 

we can access the most important ones and ascertain more information about the data. 

For example, if all the important features are in the first 20% of our packet trains, we 

might be able to omit sending larger packets. Additionally, if the Random Forest 

classifier is not giving us the optimal solution, we can keep the most desirable data and 

continue with our feature engineering.  
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Chapter 6: Results 

 

In this chapter, I will go over the results I found with my classifiers. My CSV 

Test Points File has 377 rows and 2101 columns. Each row represents data form one 

experiment or one PCAP file. Additionally, each column represents one feature. My 

classifier takes all the data and features in the data points file and reads them into a 2-

dimensional Python numpy array [19]. Next, this numpy array is shuffled like a deck 

of cards to make sure the ordering of my original PCAP files do not affect the 

outcome. This numpy array then gets separated in two matrices. The first matrix 

represents the features. Therefore, it is a matrix with 377 rows and 2,100 columns. 

The second matrix represents the class sections which only contains values of either 1 

or 0. Therefore, the class section is a matrix of 377 rows and 1 column. I will then 

divide my two matrices into a training set and a test set. This division is done 

randomly. Therefore, each time I run the experiment, I will get a new classifier. To 

implement this process, I used the train_test_split() [20] API call in Python. The 

train_test_split() takes the X and Y sets, and accepts a split percentage [20]. The split 

percentage decides the percentage of data that is dedicated to our test set. The 

remaining will be given to the training set. This API call will then return the training 

and test sets. 
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Table 2: List the API calls used for this experiment 

For my tests, I dedicated two thirds of my data to train the classifier and one 

third of data to test the accuracy of this classifier. The reason I chose this division is 

based on some experiments I ran. My classifiers had the most consistency when the 

size of my test set was 33% of the original data set.  

After obtaining the two data sets I used the svm.LinearSVC() [21] and fit() 

[21] API calls to train my classifier. The svm.LinearSVC() function creates a 

classifier and  the fit() function trains the classifier using the training set. The 

classifier was then tested with the predict() [21] API against the test set. The predict() 

function takes the test set and runs it against the classifier. I compared the results 

given to us by the predict function with the actual Y set of the test set. To verify my 

results, I used accuracy_score() [22] and confusion_matrix() [23] API calls. The 

accuracy_score() function will return how often the classifier was right in its 

predictions and the confusion_matrix() fucntion will provide us with the false 

negatives and false positive values. The results of both accuracy_score() and 

confusion_matix() were consistent with each other. 

API Call Library

train_test_split() sklearn.model_selection

LinearSVC() sklearn.svm

fit() sklearn

predict() sklearn

accuracy score() sklearn.metrics

confusion matrix sklearn.metrics

RandomForestClassifier() sklearn.ensemble 

feature_importance_ sklearn.ensemble 
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At this point, I decided to run the experiment for 100 times and get the 

average accuracy. I am happy to announce that my classifier had an average accuracy 

of 92% and a median accuracy of 94.4%. In addition, the accuracy variance is only 

1%. This result confirms our original idea that dividing each packet train into multiple 

sections will result in an accurate classifier. I chose to run my experiment for 100 

times to have a basis for my average accuracy. Moreover, I chose to display both 

average and median accuracy to demonstrate that there was not a large gap in between 

them and the average and median accuracies were close to each other. 

Next, I ran this experiment for 1,000 times and the results stayed relatively 

unchanged. The average accuracy went down by 0.3% to 91.7%. Median accuracy 

fell to 93.6%. However, the variance also went down to 0.7%. Finally, I ran this 

experiment 1,500 times and the values did not change. I believe this consistency in 

high accuracy is an evidence that my model is solid for detecting network neutrality. I 

ran the experiment for 1,000 and 1,500 times to demonstrate that the average accuracy 

did not plummet and stayed the same. We can conclude from this experiment that the 

average accuracy of 91.7% is representative of our SVM classifier. 

After getting some promising results with SVM, I decided to run my experiment 

with Random Forests. I imported the RandomForestClassifier [24] from the 

sklearn.ensemble [25] library package in order to run my experiment with random 

forests. Afterwards I used the RandomForestClassifier() [24] API call to train my new 

classifier. With random forests, I needed to figure out how many estimator sets the 

algorithm needs to create. I started with 1,000 estimators and the algorithm started 

returning an average accuracy of 96%. Then, I increased the number of estimators to 
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10,000. I immediately noticed that the training time for my classifier increased. At the 

same time, my accuracy percentage increased as well. I ran the experiment 50 times to 

get the new average accuracy.  

This experiment lasted about 60 minutes but we got some great results. The 

average accuracy climbed to 99% and the mean accuracy soared to 100%. After obtaining 

such promising results, I decided to run another test to find out which features are most 

important to my classifier. The results of this experiment can demonstrate whether we 

can reduce the packet train sizes. To get the top features, I employed the 

feature_importance_ [26] API call. feature_importance_ gives us the importance of each 

features used in our experiment. In addition, to rank the features based on their 

importance, I used the argsort function of numpy library. Table 2 lists the top 30 most 

important features that my random forest classifier employs. In Table 2, H represents 

High priority and Low represents Low priority. 
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Table 3: The 30 Most Important Features for Strict Priority Queueing 

In Table 2, the first column is the packet train section number and its sub-

feature that Random Forest deemed important. The second column is the percentage 

of time that this feature was used for decision making in the Random Forest classifier.  

Feature Importance

1. Packet Train Section 1: Percentage of H Packets 1.79%

2. Packet Train Section 1: 20th Percentile for H Packet Delays 0.97%

3. Packet Train Section 43: 80th Percentile for H Packet Delays 0.94%

4. Packet Train Section 6: 90th Percentile for H Packet Delays 0.83%

5. Packet Train Section 49: Max Number of H Packets in between L Packets 0.79%

6. Packet Train Section 1: 10th Percentile of H Packet Delays 0.79%

7. Packet Train Section 24: Max H Packet Delays 0.74%

8. Packet Train Section 38: Maximum Number of H Packets in between L Packets 0.73%

9. Packet Train Section 20: Maximum Number of H Packets in between L Packets 0.71%

10. Packet Train Section 9: Variance of H Packets in between L Packets 0.70%

11. Packet Train Section 23:  Variance of H Packets in between L Packets 0.68%

12. Packet Train Section 44: Maximum Number of H Packets in between L Packets 0.68%

13. Packet Train Section 39: Average of H Packets in between L Packets 0.68%

14. Packet Train Section 12: Variance of H Packets in between L Packets 0.68%

15. Packet Train Section 22: Variance of H Packets in between L Packets 0.68%

16. Packet Train Section 34: Maximum Number of H Packets in between L Packets 0.67%

17. Packet Train Section 35: Variance of H Packets in between L Packets 0.67%

18. Packet Train Section 15: Maximum Number of H Packets in between L Packets 0.67%

19. Packet Train Section 11: Varinace of H Packets in between L Packests 0.67%

20. Packet Train Section 25: Varinace of H Packets in between L Packests 0.66%

21. Packet Train Section 27: Maximum Number of H Packets in between L Packets 0.66%

22. Packet Train Section 37: Variance of H Packets in between L Packets 0.65%

23. Packet Train Section 7: Maximum Number of H Packets in between L Packets 0.65%

24. Packet Train Section 24: Variance of of H Packet Delays 0.65%

25. Packet Train Section 5: Variance of H Packets in between L Packets 0.64%

26. Packet Train Section 6: 40th Percentile of  H Packet Delays 0.64%

27. Packet Train Section 44: Variance of H Packets in between L Packets 0.64%

28. Packet Train Section 44: Maximum Number of H Packets in between L Packets 0.63%

29. Packet Train Section 43: Maximum Number of H Packets in between L Packets 0.63%

30. Packet Train Section 26: Variance of H Packets in between L Packets 0.63%
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As we can see, most of the top 30 features belong to the Maximum and 

Variance of H packets in between L packets. Let’s reiterate what these numbers 

represent. When extracting our features, we decided to look at the number of H 

packets that are received in between two L packets. For example, if there were 100 

packets in a packet train section and the first 3 packets were H, we would insert 3 in a 

list. Let’s assume the next 10 packets were L followed by 5 H packets. In this case, 

we would insert ten 0’s and one 5 in the list. 

I only displayed the top 30 features because at this point the aggregate 

importance is almost at 25%. Also, The importance in the remaining features after this 

point declines. In addition, my goal was to indicate that we might be able to cut the 

packet sizes in half because most of the important features are in sections 1 through 

25. In future projects, we can ascertain whether this thinking is correct or not.  

I have summarized our findings in Table 3. 

 

Table 4: The Machine Learning experiments and their aggerate results 

From Table 3, we can conclude that the Random Forest classifier with 10,000 

trees has given us the most accurate result. I believe this will be the algorithm to use 

for a commercial tool that can detect Net Neutrality in real time. Since this classifier 

has a training time of 70 seconds it can be trained offline and then used many times 

The Learning Algorithm Description Number of experiments Average Accuracy Median Accuracy Training Time

Support Vector Machine Linear 100 92% 94% 5 Seconds

Support Vector Machine Linear 1000 91.70% 93.60% 5 Seconds

Support Vector Machine Linear 1500 91.7 93.6 5 Seconds

Random Forest 1,000 Trees 50 96% 98% 10 Seconds

Random Forest 10,000 Trees 50 99% 100% 70 Seconds
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by users. Therefore, we can either train the classifier on our own server and deploy it 

to our clients, or have them run it for the first time and use it every other time they 

want to test their network. To compare our method with DiffProbe, the highest 

detection accuracy they obtained was 98.5% [6]. Our conclusion is that our detection 

is better not only because it is marginally higher but because our feature selection is 

superior. To detect SPQ, DiffProbe only considers the aggregate delay [6].  

Another study that used real internet experiment data, ShaperProbe [27], was 

able to detect the Shaping policy with up to 95% accuracy. Even though, we don’t 

detect for Shaping, our result could point to the fact that ShaperProbe could benefit 

from incorporating Machine Learning in their detection and analysis. 
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Chapter 7: Related Work 

 

In this chapter I will go over the related work that helped guide my research. Mr. 

Paul Kirth’s thesis gives an in-depth overview of the testbed and its implementation [7]. 

In that paper, Mr. Kirth covers the technical characteristics of the testbed and how the 

data packets were setup to detect different discrimination policies. In my thesis, I have 

presented an in-depth analysis of Mr. Kirth’s detection packet train setup for SPQ. My 

work provides more documentation on how this process was setup. Mr. Kirth, performed 

some analysis on the collected data to discover which time periods during the day cause 

more loss. My analysis differs from Mr. Kirth’s because I looked at each actual data point 

and extracted the features that can be used for Machine Learning analysis. In addition, I 

have considered finding different methods of reducing the packet trains that were 

generated by Mr. Kirth’s testbed. My method has a shown a 99% detection accuracy on 

data collected from the testbed which was implemented by Kirth [7]. 

Detecting General Network Neutrality Violations with Causal Inference [1] 

describes the implantation of Network Access Neutrality Observer (NANO) system [5]. 

The Detecting General Network Neutrality paper distinguishes the difference between 

active and passive probing [1]. One of the main features of this paper is that it does not 

focus on one specific detection method. Neither does it focus on discrimination against a 

specific application. Instead, this paper looks at groupings of data and attempts to analyze 

the performance of each ISP compared to the average performance of the rest of the ISPs. 

They used a black-box statistical approach called Causal Inference. The causal inference 

setup has some similarities to the feature selection used in my paper.  
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In both approaches, the data is being broken into separate groups. This is done to 

improve the detection accuracy [1]. However, one disadvantage that Causal Inference has 

compared to Machine Learning is the need to enumerate all confounding variables [1]. If 

some of the variables that impact the outcome are missing from the analysis, Causal 

Inference will begin to perform poorly. In addition, finding all confounding variables can 

be very time consuming. On the contrary, Machine Learning classifiers can look at the 

given features and even identify the more relevant ones. If some features have not been 

identified, the classifier will still be able to make proper predictions. 

Diffprobe is another paper that considers the detection of Net Neutrality 

discriminations policies. One of the methods studied here is Strict Priority Queueing. To 

detect SPQ, Diffprobe sends two different data flows [6]. The first flow is from a specific 

application that the ISPs discriminate against. The second flow is the probing flow and is 

similar to the application flow in order to receive a homogenous treatment. To detect 

SPQ, the delay values of application and probing flows are compared.  

Diffprobe also uses the Kullback-Leibler divergence test [6]. In the KL test, the 

probability mass functions of both flows are estimated. The KL test then calculates the 

divergence of these two function and finds a null hypothesis for the detection of SPQ. KL 

test uses the logarithmic difference of the two functions to calculate its measurement. KL 

test is a great statistical tool; however, this paper only looks at the delay values of data 

packets. My calculations are different than this approach because they take more 

variables into account and look at different sections of each data. 

Network Neutrality Inference [4] is a new approach for detecting Net Neutrality. 

Network Neutrality Inference looks at different paths in one network and attempts to find 
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the links that impact performance. This technique is similar to NANO where the 

performance of one ISP was compared to other ISPs [5]. In comparison to NANO, 

Network Neutrality Inference looks at the network topology and attempts to find the 

specific path or paths that violate neutrality.  

This approach uses a classifier. A series of solvable equations are created for the 

network and their algorithm calculates the insolvability of each path. If the path is highly 

unsolvable, then this path is violating net neutrality. I believe our SVM classifier is a 

better indicator compared to their system. In addition, all their experiments were run 

through a network simulator and they did not test their theory on real internet experiment 

data. Our calculations are more reliable and only use real internet data.   
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Chapter 8: Future Work 

 

I believe the first step to build on my work is to detect Policing and Shaping 

policies with Machine Learning algorithms. We already have enough data on both 

policies and the only reason I did not train a classifier for these policies was lack of time. 

A new researcher needs to study these policies and the detection packet trains our test bed 

employed. Next, the PCAP packet trains need to be converted into CSV and the features 

would be extracted from them. I believe that this project can be done in 5 months. 

During the past academic year, I worked with a testbed that was already in place. 

While working on the testbed I noticed a few areas where we could see improvement. 

First, there are no clear documentation on the C++ code that runs the testbed. This means 

that if a new researcher wants to work on the testbed, she would face a steep learning 

curve. Because I worked on the Strict Priority Queueing detection, I had a need to 

improve the documentation on existing implementation of SPQ detection. In this paper 

and through a presentation to fellow students at CSUN, I have conveyed my findings 

about the details and paraments of testbed. A very beneficial future work for this testbed 

is cleaning up the testbed and making it easier to run for non-educated users. 

In addition, Planet Lab nodes are becoming obsolete. The operating system on 

these nodes are old and cannot run modern C++ code. To make matters worse, most 

Planet Lab nodes have become unresponsive. In the future, we need to move away from 

Planet Lab and start working on newer technology. One alternative to Planet Lab is 

GENI. The process of updating and documenting the testbed requires a team of students. 

However, I believe we can achieve this goal in no time.  
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In addition, I believe we need to update the Strict Priority Queueing detection 

code. Currently, after the saturation phase is over, we start sending our packets starting 

with packet ID number 1. The issue here is that the packet numbers are shared between 

the High and Low packets. This creates some level of confusion while cleaning up the 

data. The high priority packets should have their own counter. The same is true for low 

priority ones. My proposed numbering convention can improve feature selection and 

detection accuracy. 

In the future, I would like to consider sending smaller packet trains and extract 

more features regarding the placement of High and Low priority packets. Based on my 

findings, I believe there are more patterns that can be discovered in our data that can lead 

to accurate detections with smaller packets.  

Another great future project to consider is to calculate the number of inversions 

and deletions that converted the original pattern into the received ones. In this 

experiment, we can look at the original pattern of high and low priority packets as a 

string. Then, we can create a similar string for each received packet train. An inversion 

would be the number of switches a packet would have made to move from the original 

pattern to its new spot on the received pattern. A deletion would be if a packet was lost 

during transmission and does not exist on the received pattern. Each inversion and 

deletion would have a penalty value. We can add all the penalty values and compare them 

between baseline and SPQ packet trains. This comparison could possibly lead to more 

discoveries about the previously collected data. I did not consider this method because 

my goal was to divide the packet trains. I wanted to avoid looking at data packets as only 

one unit.  
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Additionally, I would like to collect more data and analyze them based on time of 

the day. I would like to train 24 classifiers for each hour of the day and observe whether 

the detection accuracy would benefit from this classification. To make this happen, I 

would need a lot more data. In addition, collecting more data can help us with utilizing 

other Learning algorithms such as Deep Neural Network.  

Ultimately, my goal is to create a light and simple to use browser based detection 

testbed. The new testbed can be run by any user around the globe. We can do separate 

analyses for each region. However, this goal can only be achieved if efficiency of our 

testbed is improved and the network intrusion has been reduced. Everyday users will not 

have the patience to install a testbed on their own and wait for days before they have 

collected some relevant data. 
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Chapter 9: Conclusion 

 

In this chapter, I will summarize my findings regarding the Network Neutrality 

trainer that I developed over the past academic year. Detecting the violations of net 

neutrality has been a hot pursuit by the research community [6]. There are many 

successful methods of detection. Each method has its own advantages and disadvantages. 

Most detections methods focus on one or two features. My goal was to extract multiple 

features and look for patterns in data. I have demonstrated that Machine Learning 

algorithms can generate accurate classifiers. 

I believe my results here have indicated that taking multiple features into account 

can be beneficial for detection mechanisms. As Quality of Service policies evolve, the 

research community needs to improve their detection classifiers as well. The QoS 

policies can change and become more elusive to current detection methods. However, if 

more features are taken into consideration, new detectors can become immune to these 

changes. 

I believe that my work in this paper has indicated that we can send smaller packet 

trains and reduce the intrusion we have on network. As we increase the number of our 

features, we could reduce the size of packets that we extract these features from. At the 

same time, the Machine Learning algorithms can increase the accuracy of our detection 

with smaller packet sizes. I hope that future researchers in this field would follow our 

findings and employ Machine Learning algorithms in their detection.  

Finally, I would like to point out again that researchers who want to analyze  any 

data should dedicate a majority of their time to understand their data. Data needs to be 
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sanitized and studied.  Multiple efforts are needed to extract features from and find 

intricacies in data. Even after finding promising results, data should be studied further to 

extract even more important features. 
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